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Considering the motion of charged particles and the charge density in the 
quantized space, we obtain the effect of charge screening at small distances, 
which leads to the representation of the vacuum as a medium. A vector potential 
satisfying the confinement condition of a magnetic monopole is constructed. 

1. I N T R O D U C T I O N  

At present there is no doubt that the interaction mechanism and 
elementary particle properties are well described in the f ramework of 
quantum field theory, which takes into account the quantum properties of  
such objects. The elementary particles are quantum objects, i.e., they possess 
a wave character as well as a corpuscular one. Thus, it can be suggested 
that physical space has quantized (discrete) structure at small distances as 
well as the elementary particle being in the given space. This space can be 
not only a four-dimensional,  but a many-dimensional  or even infinite- 
dimensional one. The problems concerning the quantized or discrete proper- 
ties of  space have been discussed by Blokhintsev (1973), Prugove~ki (1984), 
Namsrai  (1986), and Dineykhan and Namsrai  (1985a). In accordance with 
conceptions developed in the above papers, the geometry of fiber-bundled 
space is given from the change points of  usual space-time on the "internal" 
space-time (see, for example,  Wu and Yang, 1975; Greub and Petty, 1975; 
Konopleva  and Popov, 1980; Daniel and Viallet, 1980) in which operation 
the gauge group corresponds to arbitrary gauge field. It is known that 
experimentally observed physical magnitudes are more or less macroscopic 
and are described well in the usual space, with the exception of some special 
cases. Therefore our addition characterizing the quantum and fiber-bundle 
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properties of the space is a small stochastic perturbation and a magnitude 
of a higher order than in the usual space. Proceeding from this, Dineykhan 
and Namsrai (1985a) introduced space quantum properties in the following 
way, as a small stochastic deviation from the classical coordinates: 

x ~  ~ = x ~ + LF~ (x) (1) 

here the x"  are the coordinates of usual (classical) space-time; L is a 
dimensional parameter characterizing the small scale; F"(x)  is determined 
from the tetrad field e2(x): 

r~(x) = r~  (2) 

and expresses the "internal" space that corresponds to every point of the 
usual (classical or world) space; and F" is the generator of the symmetry 
group that acts in the internal space. From (1) one can see that the 
multiplication operation for x ~ is noncommutative, i.e., 

[ ~ ,  ~"1 # 0, v # ~ (3) 

Thus (2) and (3) show that the space with the coordinate ~" found in (1) 
is quantized and fiber-bundled. 

We shall use the natural unit system in which the light velocity is equal 
to unity. Then the invariance of  proper time is a fundamental property of  
quantized as well as classical space, 

d r  2 = g ~ ( x )  " d x  ~. d x  ~ = g~.  ( ; )  " d ;  ~" d ;  ~ 

Here g ~ o ( x )  and g ~ . ( x )  are the metric tensors in the usual and quantized 
spaces, respectively. From this property of the space, it follows that the 
squares of  four-dimension velocity are equal in the quantized and usual 
spaces, i.e., 

u ~ ( ; ) u ~ ( ; )  = u ~ ( x ) u " ( x )  = 1 

where 

u~(~)u~(~) = g~(~, )u . (~)u~(; )  

and 

u ~ ( ~ )  = d~ ,~ /dr .  Then the four-dimension momentum in the space with the 
quantized coordinates is determined in the following way: 

p~(~)  = m. u~(~)  

and its square is the p~(~)-p~(~) = m 2, where m is the mass of the particle. 
Dineykhan and Namsrai (1985a) show that the metrical tensor in the 
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quantized and fiber-bundled space consists of  two parts, asymmetrical as 
well as an antisymmetrical one, 

g ~ " ( x ) ~ g  ( X ) ~ x ~ o x  o 

. . . .  [ ~ ,  _Oe~(x) . . . .  Oe2(x)]  
= g ~ " ( X ) •  L g tX)~x~+g tx) ox ~ j 

+2g.O(x)v~ ~ )  oe~(x) 
ox ox ~ 

+ T~b~L2g~O(x)r ~ O~ ~_.~.),'~('~ 
Oe~(x) 

ox ,gx ~ 
(4) 

and the antisymmetrical part leads to the torsion tensor (Obukhov, 1983; 
and de Witt, 1984), Here diag 7/= (+ - - - ) ;  v, /x, t~,/3 are the indices of  
the world (classical) space; a, b, c are the indices of  the "internal" space, 
which is usually antisymmetrical on the permutation of indices. If  the 
addition in (1) is independent of the coordinates of the point, then our 
space is quantized. 

We suppose that the additions to the coordinates in (1), which determine 
quantized and fiber-bundle properties of the space, are stochastic variables 
representing the deviation from the observed magnitude. Therefore, the 
experimentally observed (microscale) values must be average ones; this 
corresponds to the changeover of the usual space. Then from (1) one can 
find that the changeover from quantized into the usual (classical) space can 
be realized in two ways: 

1. The classical case, when the dimensional parameter (L) goes to zero 
2. We assume that the usual space is some average of the quantized 

one, i.e., 

x" =(;~5=--~ Tr(; '~) 

Here the paremeter d is the dimension of the internal space, and the symbol 
( . . . )  means the averaged operation. 

In this paper we consider the gauge invariance of the electromagnetic 
field and the motion of  the charged particles in the quantized space. Also 
it is shown that the unobservability of  the magnetic monopoles can be 
linked with the physics at very small distances, namely with the property 
of  space thus quantized (discretized) as well as fiber-bundled. 
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2. THE GAUGE INVARIANCE OF THE 
ELECTROMAGNETIC FIELD 

The principles of locality and gauge invariance restrict the form of all 
interactions independently of their physical nature and thus give the possi- 
bility of the construction of a unified consistent theory of interactions among 
elementary particles. But these principles are well determined in the usual 
(classical) space. To verify gauge invariance in the case of the electromag- 
netic field, let us express the four-dimensional potential A~,(8) of the 
electromagnetic field in the quantized space through the potential A~,(x) 
in the usual space. The interactions are introduced in the following way: 

0 0 
O ~ ; . ~ O T -  qA~ ( ~ ) 

where q is the charge. On the other hand, we know the relation between 
the divergences in different systems of coordinates, 

a ox ~ o 
o~" - o~ ~ ax" 

From these two expressions we obtain 

o o x  ~ o )q ] 
0 ~  qA.('~)=O~-'d [~x~-q" A~(x 

and hence 
O X  v 

Ag(:~) = ~ x  ~ a,,(x) (5) 

Thus, we have established the relations between the potentials in the 
quantized and usual spaces. 

In quantum field theory (see, for example, Bogoliubov and Shirkov, 
1980) the basic characteristics of the electromagnetic interactions are defined 
by the field tensor and in our case can be represented in the form 

Vv.(~)_OA.(~) OA~(~) 

Then, taking into account (5) and keeping terms of the order of L 2 only, 
we have after simple calculations 

._.[Oe~(x) 

+oeZ(x) F~,(x)] + L2r~ ~ oe';(x) 
Ox~ L 0 xa 0 x~ 

- -  f ~ . ( x )  

Oe~ Oe~(x) Oe~ Oe~(x) "1 
-t- Ox ~ Ox" F~,~(x)4 Ox ~ Ox ~ F ,~ (x ) J  (6) 
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HereF~e(x )  i s the  electromagnetic field t ensor in  the usual space, 

OAo(x) OA~(x) 
F ~ ( x )  = 

, 3x ~ Ox ~ 

and is invariant under the gauge transformations of the electromagnetic 
field A , ~ ( x ) ~ A , ( x ) + O t z f ( x ) ,  where f ( x )  is an arbitrary scalar function in 
the usual space. Then it can be seen from (6) that the field tensor F~,(~) 
defined in the quantized space is also invariant under this gauge transforma- 
tion. The Lagrangian of the electromagnetic field is written in the standard 
form: 

~ ( ~ )  = -lvo, ,(~)v~, ' (~)  

and is undoubtedly invariant under the gauge transformations of the elec- 
tromagnetica field A~, (x). 

Now let us study the expressions for the electromagnetic field of  the 
charge q in the space with quantized coordinates. From (5) and taking into 
account only the order L, we have, after simple calculations, 

Oe2(x) Av(x) (7) 
qA~, ( :~ ) = qA~, ( x ) + qLF a- Ox----- ~ 

If  the "internal" space is a colored one, then the second term in (7) can 
be considered as the color component B~(x )  of the field, which is defined 
in the form 

o goBs(x)  = qL A~(x)  

where gc is the coupling constant and F ~ is the generator. 
Thus, according to this scheme, the electromagnetic field consists of 

two parts: the color octet as well as color singlet. Though the color com- 
ponents of the electromagnetic field do not give any contribution to the 
one-photon exchange interactions, they contribute in a not dominating way 
to two-photon interactions. Ignatiev et al. (1981) suggested that generally 
the electromagnetic field consists of two parts: the color octet as well as 
color singlet. Proceeding from this hypothesis, the integer charge of quarks 
and the dynamics of spontaneously broken color symmetry can be explained. 
From the point of  view of  our scheme the nature of  the color component 
of the electromagnetic field or the dynamics of spontaneously broken color 
symmetry, i.e., the properties of the "colored" photon, can be linked to the 
quantized as well as fiber-bundle characteristics of  space at very small 
distances. 
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3. THE DENSITY OF CHARGE IN THE QUANTIZED SPACE 

Consider the vector current of the electromagnetic field. The four- 
dimensional current of the electromagnetic field is defined from the field 
tensor in standard form (see, for example, Felsager, 1981): 

OF,,.(~) 

Making the necessary calculation and taking into account (6), we have for 
the current of the electromagnetic field in the quantized space 

.~a[Oe~(x) OFx,.,(x) 
j,,(.~) = j , , (x )  + L I  L ~ ox,~ 

+ Oe~(x) OF.,,(x) + Oe~(x) OF.,,(x) 1 
Ox - - - - - ~  Ox" Ox" ~ x  ~ "J 

x x + L2r,,,rb(Oea( ) oe;(x) OFs.(x) ~ --Oe~(x) 
\ ~x"  Ox" Ox ~ Ox" 

oe~(x) OF,,s(x) Oe~.(x) Oe~(x) OFs.(x) x - - ~ - -  
Ox '~ Ox" Ox x Ox" ax ~ 

q- Oe~(x) Oe~,(x) aF,,,(x)+ Oe~(x) Oe~(x) 
Ox "~ Ox ~ Ox" Ox" ax '  

+ ~ _ ~  Oe'o(x) Oe~,(x) OF..(x)~ 
ox '~ ox" ~ ] (8) 

where j,,(x) is the current and f , . .(x) is the field tensor in the usual space, 
F" is the generator of the symmetry group in the "internal" space, and 
e~(x) is the tetrad field. 

Now let us study the charge density in the quantized space. Usually, 
the charge density is determined as the zero component of the four- 
dimensional current jo(x) of the electromagnetic field. Averaging (8), we 
have 

(p (~)) --- (jo(~)) 
,+L.,roe~(x) Oe~(x) -~ Oe~(x) Oe m 

=otx, k ~ ox-~ 7 ox' 
/ 

Oe;(x) Oe~(x)] OFoj(X), .~roeX(x) o ~ ( x )  
+ Ox--" ~ OxlJ j - ~ ,  L k ~ oxo 

+ oe~(x____~ Oegx~qvO(x ~ o~,,,?~ + ,~Oe~(x~ 
ax" ox .j ox ox i 

Oeia(x) n. . OFjm(x) (9) 
X~x~ V tx~ ox" 
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where i, j, n, m, and a = 1, 2, 3; Fm,(x) is the field tensor and v"(x) is the 
velocity of  the particles in the usual space. From (9) one can see that the 
charge density has additional terms characterizing the quantized and fiber- 
bundled properties of space at small distances. To understand the physical 
nature of this additional term in (9), knowledge of  the concrete dependence 
of  the tetrad field e~(x) on coordinates x, i.e., the structure of  "internal" 
space, is necessary. Dineykhan and Nansrai (1985a) suppose that the 
structure might be linked with the physical nature of  the magnetic Dirac 
monopoles, and in the next section we will discuss this in detail. Consider 
the "internal" space as a string (maybe the Dirac string) directed along the 
axis Z;  then e~(x) takes the form 

e~ ( x ) = i Y / r  x /r  , l ' = ( X 2 - ~ - y 2 )  1/2 (10)  

0 

Further expressing the field tensor F~(x) through the electrical E and the 
magnetic H strengths of the electromagnetic field and after the necessary 
calculation, we obtain 

Pqua(X) ---- (fl(-~)) = - (1  + 2L2/r 2) div E 

-div[(L2/r2)E-2n(n.E)L2/r 2] (11) 

where Pqua and p(x) = - d i v  E are the charge density in quantized and usual 
spaces, respectively, and n is the unit vector directed along the string radius 
r. Let us consider each term of (11) separately. 

Consider as a source of  electromagnetic field a particle with charge q 
and mass m. Then the variable 

q(r) = q(1 + 2L2/r 2) (12) 

is the charge with the density p(x) in the quantized space. It can be seen 
from (12) that the value of  the charge q(r) d e p e n d s o n  the distance; for 
r < L it increases with the decrease of r, thus leading to the effect of  screening 
the charge. On the other hand, from grand unification theory (see, for 
example, Ellis, 1984) it is known that the coupling constant or the electric 
charge increases at small distances and changes to the regime of strong 
coupling. It can be confirmed that the dynamics of  increase of  the coupling 
constant of  the electromagnetic interaction can be linked with the properties 
of space as quantized and fiber-bundled. So it was considered that the gauge 
field in the quantized space corresponds to the symmetry group U(1), i.e., 
there are the usual electromagnetic interactions of the electron, and we have 
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obtained the effect of charge screening at small distances. If we consider 
the gauge field in the quantized space defined by non-Abelian symmetry 
group, i.e., the interaction amont colored quarks, this can lead to the effect 
of antiscreening of the colored charge at small distances, i.e., to the 
asymptotic freedom. This problem deserves further investigation. 

Let us consider the second term in (11). This is the divergence of the 
vector P, which is defined in the following way: 

P = E - 2 n ( n - E ) ] L Z / r  2 

where E is the electric field strength, L is the dimensional parameter, and 
n is the unit vector directed along the string radius. Introduce the symmetrical 
tensor a/j of  the determination in the following form: 

a~j = L2(Znin~ - 6u)[n. g rad( l / r ) ]  (13) 

Using (13), we obtain for the vector P 

P, = aoE j (14) 

From the electrodynamics of  continuous media (see, for example, Landau 
and Lifschitz, 1982) it is known that the vector P defined in the form (14) 
through the field strength E is the electric dipole moment of  the medium 
and the symmetrical tensor a o defined in (13) is the polarization vector of 
the medium. Then the electric dipole moment P leads to the additional 
density of  charge p ' ( x ) ,  which is determined in the form p ' ( x ) = - d i v  P. 
From this one can see that the quantized and fiber-bundled space is like a 
dielectric medium, i.e., the model suggests that to every point of  the world 
space there corresponds a string, naturally leading to a representation of 
the vacuum as the medium. 

4. THE MOTI ON OF CHARGED PARTICLES IN THE 
ELECTROMAGNETIC FIELD 

Now we consider the motion of charged particles in the quantized 
space .  A particle carrying the charge q in the electromagnetic field will 
experience a force F, written in the standard form, which depends on the 
field tensor defined in (6): F ~ ( : ~ ) = q F ~ ( ~ ) u ~ ( ~ ) ,  where u ' ~ ( ~ ) =  
u "  ( x ) +  L u  ~ ( x ) O F ~ ( x ) / O x  ~ and u ~(x) are the four-dimensional velocity of 
particles in the quantized and usual spaces, respectively; F~(x) is defined 
in (2). After averageing and some calculations we have 

(F, , (~))  = qF,~,~(x)u~(x)  

+ L2 q ae~(x) Oe~(x)  
Ox ~ ax  ~" F ,~ , ( x )u '~ (x )  
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where F~,(x) is the field tensor in the usual space, and e~(x) is the tetrad 
field. For further calculations knowledge of the structure of the "internal" 
space, i.e., the concrete dependence of the tetrad field e~(x) on coordinates 
x, is necessary. If the tetrad field e~(x) is defined as in (10), then after 
simple calculation we obtain finally 

F = q(1 + L2/2r2)E+ q(1 + L2/r2)[v • H] 

+q(L2/2r2)['E-2n(n.E)J+q(La/r2)n([n• (15) 

where q is the charge of  the particle, E is the electrical and H the magnetic 
strengths of  the electromagnetic field, respectively, L is the dimensional 
parameter, and n is the unit vector directed along the string radius. The 
first term of (15) is the usual Coulomb force with the charge q(1 + L2/2r2), 
and the second term is the Lorentz force with the charge q(1 + L2/r2). The 
third term represents the contribution of the electric dipole moment deter- 
mined by (14) and the fourth one the contribution of the magnetic dipole 
moment (see, for example, Landau and Lifschitz, 1982), which is linked to 
the vortex motion. Then from (15) one can see that the motion of charged 
particles in the quantized space accompanied by the electromagnetic field 
is equivalent to the motion of particles in a dielectric medium. 

5. THE CONFINEMENT OF MAGNETIC M O N O P O L E  AND THE 
STRUCTURE OF " INTERNAL"  SPACE 

In the preceding section we have shown that the quantized and fiber- 
bundled properties of  the space lead to representation of the vacuum as a 
medium, i.e., in a vacuum a particle-antiparticle pair can be born, which 
leads to the effect of screening the charge. Dineykhan and Namsrai (1985a) 
attained the nonsingular potential (of course, except for the singularity at 
the origin of the coordinate system) for the magnetic monopole, but this 
does not explain the unobservability of this object. On the other hand, 
although the magnetic monopole is not experimentally observed, interest 
in this object has never been so great as at the present time. This has its 
origin in the papers by t 'Hooft  (1979) and Polyakov (1979), in which they 
showed that the magnetic monopole inevitably arises in some theories of 
the gauge field. We try to demonstrate that the absence of the magnetic 
monopole can be connected to the physics at very small distances, namely 
to such properties of  space as the quantized as well as fiber-bundled ones. 
Dineykhan and Namsrai (1985a) demonstrated the possibility of choosing 
the vector potential such that its rotor would be equal to the field of  the 
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magnetic monopole at the simultaneous condition that the field possesses 
a nonzero divergence, i.e., the density of the magnetic monopole is equal to 

L2eUk[c)Fn(x) OFm(X) O2Ak(/) ] 
P " ( x ) - = ( d i v H ( x ) ) =  L Ox i Oxj ~x~x~J 

where Ak(x) is the vector potential of the monopole,  F ro(x)=F"e~(x)  is 
defined as in (2), and L is the dimensional parameter. Now we choose the 
vector potential of the monopole in the form 

A(x)= "~ n "~ , (x2 + y2 + z2)'/2 

where g is the magnetic charge, and I" is the generator of the symmetry 
group effective in the "internal" space; for concrete calculations we should 
be using the generator of the group SU(2),  i.e., F = i~r, where cr is the Pauli 
matrix. After the necessary calculations, we obtain for the density of mag- 
netic charge 

=3Lg(Oe~(x) deE(x) Oe~(x) ae~(X)~x,xm (17) 
Pro(X) r4 t Oxa oxb oxb oxa ,] 

From (17) one can see that for further calculations knowledge of the 
structure of  "internal" space, i.e., the concrete dependence of the tetrad 
field era(x) on coordinates x, is necessary. Choose for the "internal" space 
a spherical coordinate system; then for e~'(x) we get 

{x/r zx/rp -y/r~ 
e: (x)=ly /r  zy/rp x/r I (18) 

\zlr - p l r  O ] 

where p = (x2+y2) 1/2, r = (xZ+y2 + z2) 1/2, and the density pro(x) of magnetic 
charge g for the above choice of the "internal" space and defined in (17) 
is not equal to zero and its volume integral is equal to 4~g. Nevertheless, 
magnetic charge with the density pro(x) as defined in the (17) is experi- 
mentally unobservable because the potential determined in (16) at large 
distances increases logarithmically, satisfying the confinement condition of 
the magnetic monopole. 

With the help of the tetrad field e~(x) one can define the metric tensor 
g~"(x) in the following way (see, for example, De Witt, 1984): 

g~"(x) = e;(x)e~(x)rl or3 

where ~7 ~b is the metric tensor in the usual Euclidean space, i.e., diag 77 = 
(+ . . . .  ). With the tetrad field e",(x) defined in (16) and (18), the metric 
tensor g"~'(x) determined in (19) is equal to the tensor r/ab. Then the 
transformation of covariant and contravariant components of the vector 
from one to another with the help of the metric tensor g~"(x) is not essential 
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for concrete calculations. So in concrete calculations we did not take the 
metric tensor explicitly. The potential defined in (16) is nonsingular and 
has the same form in all regions of space, which is one of the advantages 
over other nonsingular potentials (see, for example, Wu and Yang, 1976). 

Now let us study the case when the "internal" space represents strings 
directed along the axis Z, i.e., the tetrad field e~(x) defined in (10). Then 
the density pm (x) of the magnetic monopole determined in (17) for arbitrary 
nonsingular potentials is identically equal to zero, i.e., the flux of magnetic 
charge is absent. In this case for the existence of the monopole or the 
magnetic charge flux a ~ singular potential is necessary as well as the Dirac 
potential, which is defined in the pioneering paper by Dirac (1931), By 
such methods the unobservability of the magnetic monopole, as shown by 
Dirac, has its origin in the condition of quantization of the magnetic charge 
itself. 
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